Saturday, June 8, 2019
Blood pressure Essay Example for Free
breed constrict EssayBlood mash (BP), sometimes referred to as arterial derivation embrace, is the twitchexerted by circulating wrinkle upon the walls of personal line of credit watercrafts, and is one of the principal vital signs. When used without further specification, business line pressure unremarkably refers to t sum totalerial pressure of the systemic circulation. During each heartbeat, family pressure varies between a maximum (systolic) and a minimum (diastolic) pressure.1 The relationship pressure in the circulation is principally referable to the pumping action of the heart.2 Differences in slopped affinity pressure argon responsible for subscriber line f emit from one location to an different in the circulation. The rate of regard as line of products flow depends on the opposite to flow presented by the profligate vessels. Mean stemma pressure decreases as the circulating logical argument moves away from the heart finished arteries and capillar ies due to viscous losses of energy. Mean origination pressure spills everyplace the whole circulation, although close to of the fall occurs along the small arteries and arterioles.3 Gravity affects blood pressure via hydrostatic forces (e.g., during standing) and valves in veins, breathing, and pumping from contraction of skeletal muscles besides influence blood pressure in veins.2The bill blood pressure without further specification usually refers to the systemic arterial pressure mensural at a persons swiftness arm and is a measure of the pressure in the brachial artery, major(ip) artery in the upper arm. A persons blood pressure is usually expressed in terms of the systolic pressure all over diastolic pressure and is measured in millimetres of mercury (mmHg), for example 120/80.The table on the right shows the classification of blood pressure adopted by the Ameri green goddess Heart Association for adults who are 18 years and older.4 It assumes the value are a result of averaging blood pressure translations measured at 2 or much visits to the doctor.67In the UK, blood pressures are usually categorised into three groups low (90/60 or disdain), eminent (140/90 or graduate(prenominal)), and expression (values above 90/60 and below 130/80).89Normal range of blood pressureWhile fairish values for arterial pressure could be computed for any given population, there is often a large variation from person to person arterial pressure also varies in individuals from moment to moment. Additionally, the modal(a) of any given population may move over a questionable correlation with its general health thus the relevance of such fairish values is equally questionable. However, in a study of 100 human subjects with no know history of hypertension, an average blood pressure of 112/64 mmHg was lay down,10 which are currently classified as desirable or normal values. Normal values fluctuate through the 24-hour cycle, with highest readings in the afterno ons and lowest readings at night.1112Various factors, such as age and sex influence average values, influence a persons average blood pressure and variations. In children, the normal ranges are let down than for adults and depend on height.13 As adults age, systolic pressure tends to rise and diastolic tends to fall.14 In the elderly, blood pressure tends to be above the normal adult range,15 largely because of reduced tractability of the arteries. Also, an individuals blood pressure varies with exercise, emotional reactions, sleep, digestion and time of day.Differences between left and right arm blood pressure cadences tend to be random and average to well zero if enough measurements are interpreted. However, in a small percentage of cases there is a consistent difference greater than 10 mmHg which may deprivation further investigation, e.g. for obstructive arterial disease.1617The risk of cardiovascular disease increases progressively above 115/75 mmHg.18 In the past, hyperte nsion was only diagnosed if secondary signs of high arterial pressure were present, along with a prolonged high systolic pressure reading over several visits. Regarding hypotension, in practice blood pressure is considered too low only if noticeable symptoms are present.5Clinical trials demonstrate that people who maintain arterial pressures at the low end of these pressure ranges gain much better long term cardiovascular health. The principal medical debate concerns the aggressiveness and relative value of methods used to lower pressures into this range for those who do not maintain such pressure on their own. Elevations, more normally seen in older people, though often considered normal, are associated with increased morbidity and mortality.Physiology in that respect are some physical factors that influence arterial pressure. Each of these may in turn be influenced by physiological factors, such as diet, exercise, disease, drugs or alcohol, stress, obesity, and so-forth.20Some p hysical factors are Volume of wandering or blood volume, the amount of blood that is present in the body. The more blood present in the body, the high the rate of blood return to the heart and the resulting cardiac output. in that respect is some relationship between dietary salt intake and increased blood volume, potentially resulting in higher arterial pressure, though this varies with the individual and is highly dependent on autonomic nervous system response and the renin- angiotonin system.212223 Resistance. In the circulatory system, this is the resistance of the blood vessels. The higher the resistance, the higher the arterial pressure upstream from the resistance to blood flow. Resistance is related to vessel radius (the larger the radius, the lower the resistance), vessel length (the longer the vessel, the higher the resistance), blood viscosity, as well as the smoothness of the blood vessel walls. Smoothness is reduced by the build up up of fatty deposits on the arteri al walls. Substances called vasoconstrictors can reduce the size of blood vessels, thereby increasing blood pressure. Vasodilators (such as nitroglycerin) increase the size of blood vessels, thereby decreasing arterial pressure. Resistance, and its relation to volumetric flow rate (Q) and pressure difference between the deuce ends of a vessel are describe by Poiseuilles Law. Viscosity, or thickness of the fluid. If the blood gets thicker, the result is an increase in arterial pressure. Certain medical conditionscan change the viscosity of the blood. For instance, anemia (low red blood cell concentration), reduces viscosity, whereas increased red blood cell concentration increases viscosity. It had been thought that aspirin and related blood thinner drugs decreased the viscosity of blood, unless alternatively studies found24 that they act by reducing the tendency of the blood to clot.In practice, each individuals autonomic nervous system responds to and regulates all these interacti ng factors so that, although the above issues are important, the real(a) arterial pressure response of a given individual varies widely because of both split-second and slow-moving responses of the nervous system and end organs. These responses are very trenchant in changing the variables and resulting blood pressure from moment to moment.Moreover, blood pressure is the result of cardiac output increased by off-base resistance blood pressure = cardiac output Xperipheral resistance. As a result, an abnormal change in blood pressure is often an indication of a problem bear upon the hearts output, the blood vessels resistance, or both. Thus, knowing the patients blood pressure is critical to assess any pathology related to output and resistance.Mean arterial pressureThe mean arterial pressure (MAP) is the average over a cardiac cycle and is determined by the cardiac output (CO), systemic vascular resistance (SVR), and primeval venous pressure (CVP),25Curve of the arterial pressure during one cardiac cycle The up and down fluctuation of the arterial pressure results from the pulsatile nature of thecardiac output, i.e. the heartbeat. The trice pressure is determined by the interaction of thestroke volume of the heart, compliance (ability to expand) of the aorta, and the resistance to flow in the arterial tree. By expanding under pressure, the aorta absorbs some of the force of the blood surge from the heart during a heartbeat. In this way, the pulse pressure is reduced from what it would be if the aorta wasnt compliant.26 The loss of arterial compliance that occurs with aging explains the elevated pulse pressures found in elderly patients.The pulse pressure can be simply calculated from the difference of the measured systolic and diastolic pressures,26Armleg gradientThe armleg (blood pressure) gradient is the difference between the blood pressure measured in the arms and that measured in the legs. It is normally less(prenominal) than 10 mmHg,27 but may be in creased in e.g. coarctation of the aorta.27Vascular resistanceThe larger arteries, including all large enough to see without magnification, are conduits with low vascular resistance (assuming no advanced atherosclerotic changes) with high flow rates that generate only small drops in pressure. The smaller arteries and arterioles have higher resistance, and confer the main drop in blood pressure along the circulatory system.Vascular pressure waveModern physiology developed the concept of the vascular pressure wave (VPW). This wave is created by the heart during the systoleand originates in the ascending aorta. Much faster than the stream of blood itself, it is past transported through the vessel walls to the peripheral arteries. There the pressure wave can be palpated as the peripheral pulse. As the wave is reflected at the peripheral veins, it runs back in a sensing elementy(a) fashion.When the reflected wave meets the next outbound pressure wave, the pressure inside(a) the vesse l rises higher than the pressure in the aorta. This concept explains why the arterial pressure inside the peripheral arteries of the legs and arms is higher than the arterial pressure in the aorta,282930 and in turn for the higher pressures seen at the ankle compared to the arm with normal ankle brachial pressure index values.RegulationThe endogenous regulation of arterial pressure is not completely understood, but the following mechanisms of regulating arterial pressure have been well-characterized Baroreceptor reflex Baroreceptors in the high pressure receptor zones detect changes in arterial pressure. These baroreceptors send signals ultimately to the medulla of the brain stem, specifically to the Rostral ventrolateral medulla (RVLM). The medulla, by way of the autonomic nervous system, adjusts the mean arterial pressure by altering both the force and speed of the hearts contractions, as well as the total peripheral resistance. The most important arterial baroreceptors are locate d in the left and rightcarotid sinuses and in the aortic arch.31 Renin-angiotensin system (RAS) This system is generally known for its long-term adjustment of arterial pressure. This system allows the kidney to compensate for loss in blood volume or drops in arterial pressure by touch off an endogenous vasoconstrictorknown as angiotensin II. Aldosterone release This steroid hormone is released from the adrenal cortex in response to angiotensin II or high serum potassiumlevels. Aldosterone stimulates sodium retention and potassium excretion by the kidneys. Since sodium is the main ion that determines the amount of fluid in the blood vessels by osmosis, aldosterone will increase fluid retention, and indirectly, arterial pressure. Baroreceptors in low pressure receptor zones (mainly in the venae cavae and the pulmonary veins, and in the atria) result in feedback by regulating the secretion of antidiuretic hormone (ADH/Vasopressin), renin and aldosterone. The resultant increase inbl ood volume results an increased cardiac output by the FrankStarling law of the heart, in turn increasing arterial blood pressure.These diverse mechanisms are not necessarily independent of each other, as indicated by the link between the RAS and aldosterone release. Currently, the RAS is targeted pharmacologically by ACE inhibitors and angiotensin II receptor antagonists. The aldosterone system is directly targeted by spironolactone, an aldosterone antagonist. The fluid retention may be targeted by diuretics the antihypertensive effect of diuretics is due to its effect on blood volume. Generally, the baroreceptor reflex is not targeted in hypertensionbecause if blocked, individuals may suffer from orthostatic hypotension and fainting.MeasurementA medical student checking blood pressure using a sphygmomanometer and stethoscope. Arterial pressure is most commonly measured via a sphygmomanometer, which historically used the height of a column of mercury to reflect the circulating pres sure.32 Blood pressure values are generally reported in millimetres of mercury (mmHg), though aneroid and electronic devices do not use mercury.For each heartbeat, blood pressure varies between systolic and diastolic pressures. Systolic pressure is peak pressure in the arteries, which occurs near the end of the cardiac cyclewhen the ventricles are contracting. Diastolic pressure is minimum pressure in the arteries, which occurs near the beginning of the cardiac cycle when the ventricles are filled with blood. An example of normal measured values for a resting, hygienic adult human is 120 mmHgsystolic and 80 mmHg diastolic (written as 120/80 mmHg, and spoken in the US and UK as one-twenty over eighty).Systolic and diastolic arterial blood pressures are not static but undergo natural variations from one heartbeat to another and throughout the day (in a circadian rhythm). They also change in response to stress, nutritional factors, drugs, disease, exercise, and momentarily from standi ng up. Sometimes the variations are large. Hypertension refers to arterial pressure being abnormally high, as contrary to hypotension, when it is abnormally low. Along with body temperature, respiratory rate, and pulse rate, blood pressure is one of the four main vital signs routinely monitored by medical professionals and healthcare providers.33Measuring pressure invasively, by penetrating the arterial wall to take the measurement, is much less common and usually restricted to a hospital setting.noninvasiveThe noninvasive auscultatory and oscillometric measurements are simpler and quicker than invasive measurements, require less expertise, have virtually no complications, are less unpleasant and less irritative for the patient. However, noninvasive methods may yield somewhat lower accuracy and small systematic differences in numerical results. Noninvasive measurement methods are more commonly used for routine examinations and monitoring.editPalpationA minimum systolic value can be roughly estimated by palpation, most often used in jot situations, but should be used with caution.34 It has been estimated that, using 50% percentiles, carotid, femoral and radial pulses are present in patients with a systolic blood pressure 70 mmHg, carotid and femoral pulses alone in patients with systolic blood pressure of 50 mmHg, and only a carotid pulse in patients with a systolic blood pressure of 40 mmHg.34A more accurate value of systolic blood pressure can be obtained with a sphygmomanometer and palpating the radial pulse.35 The diastolic blood pressure cannot be estimated by this method.36 The American Heart Association recommends that palpation be used to get an estimate sooner using the auscultatory method.AuscultatoryAuscultatory method aneroid sphygmomanometer with stethoscopeMercury manometerThe auscultatory method (from the Latin word for listening) uses a stethoscope and asphygmomanometer. This comprises an inflatable (Riva-Rocci) handcuff placed around t he upperarm at roughly the same vertical height as the heart, attached to a mercury or aneroidmanometer. The mercury manometer, considered the gold standard, measures the height of a column of mercury, freehand an absolute result without indispensability for calibration and, consequently, not subject to the errors and drift of calibration which affect other methods. The use of mercury manometers is often required in clinical trials and for the clinical measurement of hypertension in high-risk patients, such as pregnant women.A cuff of appropriate size is fitted smoothly and snugly, then noble-minded manually by repeatedly squeezing a rubber bulb until the artery is completely occluded. Listening with the stethoscope to the brachial artery at the elbow, the examiner slowly releases the pressure in the cuff. When blood just starts to flow in the artery, the turbulent flow creates a whooshing or pounding (first Korotkoff operate). The pressure at which this sound is first heard is the systolic blood pressure. The cuff pressure is further released until no sound can be heard (fifth Korotkoff sound), at the diastolic arterial pressure.The auscultatory method is the predominant method of clinical measurement.37OscillometricThe oscillometric method was first demonstrated in 1876 and involves the observation of oscillations in the sphygmomanometer cuff pressure38 which are caused by the oscillations of blood flow, i.e., the pulse.39 The electronic version of this method is sometimes used in long-term measurements and general practice. It uses a sphygmomanometer cuff, like the auscultatory method, but with an electronic pressure sensor (transducer) to observe cuff pressure oscillations, electronics to automatically interpret them, and automatic inflation and deflation of the cuff. The pressure sensor should be calibrated periodically to maintain accuracy.Oscillometric measurement requires less skill than the auscultatory technique and may be suitable for use by un trained staff and for automated patient main office monitoring.The cuff is inflated to a pressure initially in excess of the systolic arterial pressure and then reduced to below diastolic pressure over a period of astir(predicate) 30 seconds. When blood flow is nil (cuff pressure exceeding systolic pressure) or unimpeded (cuff pressure below diastolic pressure), cuff pressure will be essentially constant. It is essential that the cuff size is correct undersized cuffs may yield too high a pressure oversized cuffs yield too low a pressure. When blood flow is present, but restricted, the cuff pressure, which is monitored by the pressure sensor, will vary periodically in synchrony with the cyclic expansion and contraction of the brachial artery, i.e., it will oscillate. The values of systolic and diastolic pressure are computed, not actually measured from the birthday suit data, using an algorithm the computed results are displayed.Oscillometric monitors may produce inaccurate readin gs in patients with heart and circulation problems, which include arterial sclerosis, arrhythmia, preeclampsia, pulsus alternans, and pulsus paradoxus.In practice the different methods do not give identical results an algorithm and experimentally obtained coefficients are used to adjust the oscillometric results to give readings which match the auscultatory results as well as possible. Some equipment uses computer-aided abstract of the instantaneous arterial pressure waveform to determine the systolic, mean, and diastolic points. Since many oscillometric devices have not been validated, caution must be given as most are not suitable in clinical and acute care settings.The term NIBP, for non-invasive blood pressure, is often used to describe oscillometric monitoring equipment.Continuous noninvasive techniques (CNAP)Continuous Noninvasive Arterial Pressure (CNAP) is the method of measuring arterial blood pressure in real-time without any interruptions and without cannulating the huma n body. CNAP combines the advantages of the following two clinical gold standards it measures blood pressure continuously in real-time like the invasive arterial catheter system and it is noninvasive like the standard upper arm sphygmomanometer. Latest developments in this field show promising results in terms of accuracy, ease of use and clinical acceptance.Non-occlusive techniques the Pulse Wave Velocity (PWV) preceptSince the 90s a novel family of techniques based on the so-called Pulse wave velocity (PWV) principle have been developed. These techniques rely on the fact that the velocity at which an arterial pressure pulse travels along the arterial tree depends, among others, on the underlying blood pressure.40 Accordingly, after a calibration maneuver, these techniques provide indirect estimates of blood pressure by translating PWV values into blood pressure values.41The main advantage of these techniques is that it is possible to measure PWV values of a subject continuously (b eat-by-beat), without medical supervision, and without the need of inflating brachial cuffs. PWV-based techniques are still in the research domain and are not adapted to clinical settings.White-coat hypertensionFor some patients, blood pressure measurements taken in a doctors office may not correctly characterize their typical blood pressure.42 In up to 25% of patients, the office measurement is higher than their typical blood pressure. This type of error is calledwhite-coat hypertension (WCH) and can result from anxiety related to an examination by a health care professional.43 The misdiagnosis of hypertension for these patients can result in needless and possibly harmful medication. WCH can be reduced (but not eliminated) with automated blood pressure measurements over 15 to 20 minutes in a quiet part of the office or clinic.44Debate continues regarding the significance of this effect.citation needed Some reactive patients will react to many other stimuli throughout their daily li ves and require treatment. In some cases a lower blood pressure reading occurs at the doctors office.45Home monitoring ambulatory blood pressure devices that take readings every half hour throughout the day and night have been used for identifying and mitigating measurement problems like white-coat hypertension. Except for sleep, home monitoring could be used for these purposes instead of ambulatory blood pressure monitoring.46 Home monitoring may be used to improve hypertension vigilance and to monitor the effects of lifestyle changes and medication related to blood pressure.6Compared to ambulatory blood pressure measurements, home monitoring has been found to be an effective and lower cost alternative,464748 but ambulatory monitoring is more accurate than both clinic and home monitoring in diagnosing hypertension. Ambulatory monitoring is recommended for most patients in advance the start of antihypertensive drugs.49Aside from the white-coat effect, blood pressure readings outsi de of a clinical setting are usually slightly lower in the volume of people. The studies that looked into the risks from hypertension and the benefits of lowering blood pressure in affected patients were based on readings in a clinical environment.When measuring blood pressure, an accurate reading requires that one not drink coffee, smoke cigarettes, or engage in strenuous exercise for 30 minutes before taking the reading. A bountiful bladder may have a small effect on blood pressure readings if the urge to urinate arises, one should do so before the reading.For 5 minutes before the reading, one should sit upright in a chair with ones feet flat on the floor and with limbs uncrossed. The blood pressure cuff should always be against bare skin, as readings taken over a shirt sleeve are less accurate. During the reading, the arm that is used should be relaxed and kept at heart level, for example by resting it on a table.50Since blood pressure varies throughout the day, measurements i ntended to monitor changes over longer time frames should be taken at the same time of day to ensure that the readings are comparable. Suitable times are immediately after awakening (before washing/ training and taking breakfast/drink), while the body is still resting, immediately after finishing work.Automatic self-contained blood pressure monitors are available at reasonable prices, some of which are capable of Korotkoffs measurement in addition to oscillometric methods, enabling irregular heartbeat patients to accurately measure their blood pressure at home.InvasiveArterial blood pressure (BP) is most accurately measured invasively through an arterial line. Invasive arterial pressure measurement with intravascular cannulae involves direct measurement of arterial pressure by placing a cannula needle in an artery (usually radial, femoral,dorsalis pedis or brachial).The cannula must be connected to a sterile, fluid-filled system, which is connected to an electronic pressure transduc er. The advantage of this system is that pressure is constantly monitored beat-by-beat, and a waveform (a graph of pressure against time) can be displayed. This invasive technique is regularly employed in human and veterinary intensive care medicine, anesthesiology, and for research purposes.Cannulation for invasive vascular pressure monitoring is infrequently associated with complications such as thrombosis, infection, andbleeding. Patients with invasive arterial monitoring require very close supervision, as there is a danger of severe bleeding if the line becomes disconnected. It is generally reserved for patients where rapid variations in arterial pressure are anticipated.Invasive vascular pressure monitors are pressure monitoring systems designed to acquire pressure information for display and processing. There are a variety of invasive vascular pressure monitors for trauma, critical care, and operating room applications. These include single pressure, dual pressure, and multi-p arameter (i.e. pressure / temperature). The monitors can be used for measurement and follow-up of arterial, central venous, pulmonary arterial, left atrial, right atrial, femoral arterial, umbilical venous, umbilical arterial, and intracranial pressures.Fetal blood pressure bring forward information Fetal circulationBlood pressure In pregnancy, it is the fetal heart and not the mothers heart that builds up the fetal blood pressure to drive its blood through the fetal circulation.The blood pressure in the fetal aorta is approximately 30 mmHg at 20 weeks of gestation, and increases to approximately 45 mmHg at 40 weeks of gestation.51 The average blood pressure for full-term infantsSystolic 6595 mm HgDiastolic 3060 mm Hg52Blood pressure is the measurement of force that is applied to the walls of the blood vessels as the heart pumps blood throughout the body.53 The human circulatory system is 400,000 miles long, and the magnitude of blood pressure is not coherent in all the blood vesse ls in the human body. The blood pressure is determined by the diameter, flexibility and the amount of blood being pumped through the blood vessel.53 Blood pressure is also affected by other factors including exercise, stress level, diet and sleep.The average normal blood pressure in the brachial artery, which is the next direct artery from the aorta after the subclavian artery, is 120mmHg/80mmHg. Blood pressure readings are measured in millimeters of mercury (mmHg) using sphygmomanometer. Two pressures are measured and recorded namely as systolic and diastolic pressures.Systolic pressure reading is the first reading, which represents the maximum exerted pressure on the vessels when the heart contracts, while the diastolic pressure, the second reading, represents the minimum pressure in the vessels when the heart relaxes.54 Other major arteries have similar levels of blood pressure recordings indicating very low disparities among major arteries. The innominate artery, the average rea ding is 110/70mmHg, the right subclavian artery averages 120/80 and the abdominal aorta is 110/70mmHg.55 The relatively uniform pressure in the arteries indicate that these blood vessels act as a pressure reservoir for fluids that are transported within them.Pressure drops gradually as blood flows from the major arteries, through the arterioles, the capillaries until blood is pushed up back into the heart via the venules, the veins through the vena cava with the help of the muscles. At any given pressure drop, the flow rate is determined by the resistance to the blood flow. In the arteries, with the absence of diseases, there is very little or no resistance to blood. The vessel diameter is the most principal determinant to control resistance. Compared to other smaller vessels in the body, the artery has a much bigger diameter (4mm), therefore the resistance is low.55In addition, flow rate (Q) is also the product of the cross-section(a) area of the vessel and the average velocity (Q = AV). Flow rate is directly comparative to the pressure drop in a tube or in this case a vessel. P Q. The relationship is further described by Poisseulles equation P = 8lQ/r4.56 As evident in the Poisseulles equation, although flow rate is proportional to the pressure drop, there are other factors of blood vessels that contribute towards the difference in pressure drop in bifurcations of blood vessels. These include viscosity, length of the vessel, and radius of the vessel.Factors that determine the flows resistance as described by Poiseuilles relationship P pressure drop/gradient viscosity l length of tube. In the case of vessels with infinitely long lengths, l is replaced with diameter of the vessel. Q flow rate of the blood in the vessel r radius of the vesselAssuming steady, laminar flow in the vessel, the blood vessels behavior is similar to that of a pipe. For instance if p1 and p2 are pressures are at the ends of the tube, the pressure drop/gradient is57In the arterioles blood pressure is lower than in the major arteries. This is due to bifurcations, which cause a drop in pressure. The more bifurcations, the higher the total cross-sectional area, therefore the pressure across the outdoors drops. This is why the arterioles have the highest pressure-drop. The pressure drop of the arterioles is the product of flow rate and resistance P=Q xresistance. The high resistance observed in the arterioles, which factor largely in the P is a result of a smaller radius of about 30 m.58 The smaller the radius of a tube, the larger the resistance to fluid flow.Immediately following the arterioles are the capillaries. Following the logic obvserved in the arterioles, we expect the blood pressure to be lower in the capillaries compared to the arterioles. Since pressure is a function of force per unit area, (P = F/A), the larger the surface area, the lesser the pressure when an external force acts on it. Though the radii of the capillaries are very small, the networ k of capillaries have the largest surface area in the vascular network. They are known to have the largest surface area (485mm) in the human vascular network. The larger the total cross-sectional area, the lower the mean velocity as well as the pressure.55Reynolds morsel also affects the blood flow in capillaries. Due to its smaller radius and lowest velocity compared to other vessels, the Reynolds number at the capillaries is very low, resulting in laminar instead of turbulent flow.59The Reynolds number (denoted NR or Re) is a relationship that helps determine the behavior of a fluid in a tube, in this case blood in the vessel. The equation for this dimensionless relationship is written as56 density of the blood v mean velocity of the blood L distinctive dimension of the vessel, in this case diameter viscosity of bloodThe Reynolds number is directly proportional to the velocity and diameter of the tube. Note that NR is directly proportional to the mean velocity as well as the d iameter. A Reynolds number of less than 2300 is laminar fluid flow, which is characterized by constant flow motion, whereas a value of over 4000, is represented as turbulent flow. Turbulent flow is characterized as chaotic and irregular flow.56DisordersDisregulation disorders of blood pressure control include high blood pressure, blood pressure that is too low, and blood pressure that shows excessive or maladaptive fluctuation.HighMain article HypertensionOverview of main complications of long high blood pressure. Arterial hypertension can be an indicator of other problems and may have long-term adverse effects. Sometimes it can be an acute problem, for examplehypertensive emergency.All levels of arterial pressure put mechanical stress on the arterial walls. Higher pressures increase heart workload and progression of ulcerous tissue growth (atheroma) that develops within the walls of arteries. The higher the pressure, the more stress that is present and the more atheroma tend to p rogress and the heart muscle tends to thicken, enlarge and become weaker over time.Persistent hypertension is one of the risk factors for strokes, heart attacks,heart failure and arterial aneurysms, and is the leading cause of chronic renal failure. Even moderate elevation of arterial pressure leads to shortened life expectancy. At severely high pressures, mean arterial pressures 50% or more above average, a person can expect to live no more than a few years unless appropriately treated.60In the past, most attention was paid to diastolic pressure but nowadays it is recognised that both high systolic pressure and high pulse pressure (the numerical difference between systolic and diastolic pressures) are also risk factors. In some cases, it appears that a decrease in excessive diastolic pressure can actually increase risk, due probably to the increased difference between systolic and diastolic pressures (see the article on pulse pressure). If systolic blood pressure is elevated (140) with a normal diastolic blood pressure (
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.